N-Channel JFET Monolithic Dual

SST5912

FEATURES

● High Gain		
Low Leakage	 IG	< 1pA typical
Low Noise		

Surface Mount Package

APPLICATIONS

- Differential Wideband Amplifier
- VHF/UHF Amplifiers
- Test and Measurement

DESCRIPTION

The SST5912 is a High Speed N-Channel Monolithic JFET pair encapsulated in a surface mount plastic SO-8 package. The device is designed for high gain (typically > 6000 mmhos), low leakage (< 1pA typically) and low noise, The SST5912 is an excellent choice for differential wideband amplifiers, VHF/UHF amplifiers and test and measurement.

ORDERING INFORMATION

Part	Package	Temperature Range
SST5912	Plastic SO-8 Package	-55°C to +150°C
NOTE: Fo	r Sorted Chips in Carriers, S	See 2N5911 Series

PIN CONFIGURATION SO-8 **TOP VIEW** (1) S1 N/C (8) (2) D1 ∐ G2 (7) (3) G1 D2 (6) (4) N/C S2 (5) CJ1 **PRODUCT MARKING** SST5912 SST5912

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Parameter/Test Condition		Symbol	Limit	Unit	
Gate-Drain Voltage	9	$V_{\sf GD}$	-25	V	
Gate-Source Voltage	ge	VGS	-25	V	
Forward Gate Curr	ent	lG	50	mA	
Power Dissipation	(per side)	P_{D}	300	mW	
·	(total)		500	mW	
Power Derating	(per side)		2.4	mW/ °C	
· ·	(total)		4	mW/ °C	
Operating Junction Temperature		TJ	-55 to 150	°C	
Storage Temperature		T _{stg}	-65 to 150	°C	
Lead Temperature (1/16" from case for 10 seconds)		T_L°	300	°C	

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

SYMBOL	CHARACTERISTCS	TYP ¹	SST5912		LINUT	TEST COMPITIONS	
STWIBOL			MIN	MAX	UNIT	TEST CONDITIONS	
STATIC							
V _{(BR)GSS}	Gate-Source Breakdown Voltage	-35	-25		V	$I_G = -1 \text{mA}, V_{DS} = 0 \text{V}$	
V _{GS(OFF)}	Gate-Source Cut off Voltage	-3.5	-1	-5	V	$V_{DS} = 10V, I_{D} = 1nA$	
I _{DSS}	Saturation Drain Current ²	15	7	40	mA	V _{DS} = 10V, V _{GS} = 0V	
I _{GSS} Gate Reverse Current	Gate Reverse Current	-1		-100	pА	$V_{GS} = -15V, V_{DS} = 0$	V
1655	Gale Reverse Current	-0.2			nA	$T_A = 125^{\circ}C$	
I _G	Gate Operating Current	-1		-100	pA	$V_{DG} = 10V, I_D = 5mA$	A
iG	Gate Operating Current	-0.2			nA	$T_A = 125^{\circ}C$	
Vgs	Gate-Source Voltage	-1.5	-0.3	-4	V	V _{DG} = 10V, I _D = 5mA	
V _{GS(F)}	Gate-Source Forward Voltage	0.7			V	$I_G = 1mA$, $V_{DS} = 0V$	
DYNAMIC							
9 fs	Common-Source Forward Transconductance	6	5	10	mS	$V_{DG} = 10V$, $I_D = 5mA$ f = 1kHz	
gos	Common-Source Output Conductance	20		100	mS		
9 fs	Common-Source Forward Transconductance	6	5	10	mS	V _{DG} = 10V, I _D = 5mA f = 100MHz	
gos	Common-Source Output Conductance	30		150	mS		
Ciss	Common-Source Input Capacitance	3.5		5	pF	$V_{DG} = 10V$, $I_D = 5mA$ f = 1MHz	
Crss	Common-Source Reverse Transfer Capacitance	1		1.2	ρi		
e _n	Equivalent Input Noise Voltage	4		20	nV/√ Hz	V _{DG} = 10V, I _D = 5mA, f = 10kHz	
NF	Noise Figure	0.1		1	dB	V _{DG} = 10V, I _D = 5mA, f = 10kHz, R _G = 100W	
MATCHING							
Vgs1 - Vgs2	Differential Gate Source Voltage	7		15	mV	V _{DG} = 10V, I _D = 5mA	
	Gate Source Voltage Differential Change with Temperature	10		40	mV/ °C	$T = -55 \text{ to } 25^{\circ}\text{C}$	V _{DG} = 10V I _D = 5mA
		10		40		T = 25 to 125°C	
I _{DSS1} I _{DSS2}	Saturation Drain Current Ratio	0.98	0.95	1		V _{DS} = 10V, V _{GS} = 0V	
<u></u> gfs1 gfs2	Transconductance Ratio	0.98	0.95	1		$V_{DG} = 10V, I_D = 5mA, f = 1kHz$	
I _{G1} - I _{G2}	Differential Gate Current	0.01		20	nA	$V_{DG} = 10V, I_D = 5mA, T_A = 125^{\circ}C$	
CMRR	Common Mode Rejection Ratio	90			dB	$V_{DD} = 5$ to 10V, $I_D = 5$ mA	

NOTES: 1. For design aid only, not subject to production testing.

^{2.} Pulse test; PW = 300ms, duty cycle â 3%.